
The Atomic Energy Network (ænet)
(release 1.0.0)

Nongnuch Artrith

January 10, 2016

Contents

1 What is ænet? 3

2 License 3

3 Installation 3

3.1 Short installation summary 3

3.2 Detailed installation instructions 4

3.2.1 Compilation of external libraries that are distributed
with ænet . 5

3.2.2 Build ænet . 5

4 General concepts 6

5 References 8

6 ANN potential construction 8

6.1 Structural energy reference data 9

6.1.1 Example ænet XSF file of an isolated structure 9

6.1.2 Example ænet XSF file of a periodic structure 10

6.2 Invariant basis (structural fingerprint) 10

1

6.2.1 List of keywords . 10

6.2.2 Input file template (atomtype.stp) 11

6.2.3 Input file example (Ti.fingerprint.stp) 12

6.3 Training set generation with generate.x 12

6.3.1 Alphabetic list of keywords 13

6.3.2 Input file template (generate.in) 13

6.3.3 Input file example (generate.in) for TiO2 14

6.4 ANN potential training with train.x 14

6.4.1 Alphabetic list of keywords 15

6.4.2 Training methods . 16

6.4.3 Input file template (train.in) 17

6.4.4 Example input file (train.in) 18

7 Using ANN potentials for atomistic simulations 19

7.1 Prediction of structural energies and atomic forces with
predict.x . 19

7.1.1 Alphabetic list of keywords 19

7.1.2 Input file template (predict.in) 20

7.1.3 Input file example (predict.in) for TiO2 21

7.2 ASE Interface: aenet-predict.py and aenet-md.py 22

7.2.1 Alphabetic list of keywords 22

7.2.2 Input file template (input.json) 23

7.2.3 Input file example (input.json) 23

8 Acknowledgment 24

9 Questions? 24

10 Bibliography 24

2

1 What is ænet?

The Atomic Energy NETwork (ænet) package is a collection of tools for the
construction and application of atomic interaction potentials based on artificial
neural networks (ANN). The ænet code allows the accurate interpolation
of structural energies, e.g., from electronic structure calculations, using
ANNs. ANN potentials generated with ænet can then be used in larger scale
atomistic simulations and in situations where extensive sampling is required,
e.g., in molecular dynamics or Monte-Carlo simulations.

2 License

Copyright (C) 2015-2016 Nongnuch Artrith (nartrith@atomistic.net)

ænet is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANYWARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program. If not, see http://www.gnu.org/licenses.

3 Installation

3.1 Short installation summary

1. Compile the L-BFGS-B library

• Enter the directory "./lib"
$ cd ./lib

• Adjust the compiler settings in the "Makefile"

• Compile the library with
$ make

3

http://www.gnu.org/licenses/gpl-3.0.en.html
http://www.gnu.org/licenses

The library file liblbfgsb.a, required for compiling ænet, will be
created.

2. Compile the ænet package

• Enter the directory "./src"
$ cd ./src

• Compile the ænet source code with
$ make -f makefiles/Makefile.XXX
where Makefile.XXX is an approproiate Makefile.
To see a list of available Makefiles just type:
$ make

The following executables will be generated in "./bin":

• generate.x: generate training sets from atomic structure files

• train.x: train new neural network potentials

• predict.x: use existing ANN potentials for energy/force predic-
tion

3.2 Detailed installation instructions

Except for a number of Python scripts, ænet is developed in Fortran 95/2003.
Generally, the source code is tested with the free GNU Fortran compiler and
the commercial Intel Fortran compiler, and the Makefile settings for these
two compilers are provided. While the ænet source code should be platform
independent, we mainly target Linux and Unix clusters and ænet has not
been tested on other operating systems.

ænet requires three external libraries:

1. BLAS (Basic Linear Algebra Subprograms),

2. LAPACK (Linear Algebra PACKage),

3. And the L-BFGS-B optimization routines by Nocedal et al.

Usually, some implementation of BLAS and LAPACK comes with the op-
erating system or the compiler. If that is not the case, the libraries can be

4

obtained from Netlib.org. libblas.a and liblapack.a have to be in the
system library path in order to compile ænet.

The L-BFGS-B routines, an implementation of the bounded limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithm, is distributed on the homepage
of the authors (Nocedal et al.). For the user’s convenience we have decided to
distribute the original L-BFGS-B files along with ænet package, so you do
not have to actually download the library yourself. However, each application
of ænet should also acknowledge the use of the L-BFGS-B library by citing:

R. H. Byrd, P. Lu and J. Nocedal, SIAM J. Sci. Stat. Comp. 16 (1995)
1190-1208.

3.2.1 Compilation of external libraries that are distributed with
ænet

All external libraries needed by the ænet code are in the directory "./lib".
Currently, only one external library is distributed with ænet, the L-BFGS-B
library (see above).

To compile the external libraries

1. Enter the directory "./lib"

$ cd ./lib

2. Adjust the compiler settings in the "Makefile"

The Makefile contains settings for the GNU Fortran compiler (gfortran)
and the Intel Fortran compiler (ifort). Uncomment the section that
is appropriate for your system.

3. Compile the library with

$ make

The static library "liblbfgsb.a", required to build ænet, will be created.

3.2.2 Build ænet

The ænet source code is located in "./src".

1. Enter "./src"

$ cd ./src

5

http://www.netlib.org/
http://www.ece.northwestern.edu/~nocedal/lbfgsb.html
http://www.ece.northwestern.edu/~nocedal/lbfgsb.html

2. To see a short explanation of the Makefiles that come with ænet, just
run make without any options.
$ make

Select the Makefile that is appropriate for your computer.

3. Compile with
$ make -f makefiles/Makefile.XXX

where Makefile.XXX is the selected Makefile.

Three executables will be generated and stored in "./bin":

• generate.x: generate training sets from atomic structure files

• train.x: train new neural network potentials

• predict.x: use existing ANN potentials for energy/force prediction

4 General concepts

ænet provides tools for the construction and application of artificial neural
network (ANN) potentials. Users who just want to use ænet for simulations
based on existing ANN potentials can safely skip over section 6 that explains
the construction of ANN potentials directly to section 7.

Potential construction using ænet is broken down into two separate tasks: (i)
the compilation of reference structures and energies into a single training set
file using the tool generate.x and (ii) the actual fit of the ANN potentials
using the tool train.x. The usage of these tools is described in section 6.

Simulations based on existing ANN potentials is enabled by the ænetLib
library. ænetLib provides routines for parsing ANN potential files and
for energy and force evaluation. Part of the ænet package are sample
implementations in Fortran and Python that interface with ænetLib. These
tools are discussed in section 7.

A schematic of the interplay of the different ænet tools is shown in figure 1
(taken from reference [1]).

The ænet tools generate.x, train.x, and predict.x are controlled via
keyword-based input files. The keywords understood by each of the tools are
discussed in their corresponding section; the order in which keywords appear
in the input files is arbitrary. Keywords are not case sensitive.

6

Figure 1: Schematic of the connection and workflow betwen the ænet tools
(see reference [1]).

7

5 References

Every scientific publication containing results that were produced with ænet
should cite the appropriate original references.

The reference for the ænet package itself is: [1] N. Artrith and A. Urban,
Comput. Mater. Sci. 114 (2016) 135-150.

The interpolation of atomic energies with ANNs was first published in: [2] J.
Behler and M. Parrinello, Phys. Rev. Lett. 98 (2007) 146401.

If the local structural environment is represented by symmetry functions,
please cite: [3] J. Behler, J. Chem. Phys. 134 (2011) 074106.

If the generalized spherical harmonics are used for the representation of the
local structural environment, please cite: [4] A. P. Bartók, M. C. Payne, R.
Kondor, and G. Csányi, Phys. Rev. Lett. 104 (2010) 136403.

The L-BFGS-B method is provided by a third party library. Whenever the
method is used for training, please cite: [5] R. H. Byrd, P. Lu and J. Nocedal,
SIAM J. Sci. Stat. Comp. 16 (1995) 1190-1208.

The references for the Levenberg-Marquardt method are: [6] K. Levenberg, Q.
Appl. Math. 2 (1944) 164–168; [7] D. W. Marquardt, SIAM J. Appl. Math.
11 (1963) 431–441.

6 ANN potential construction

The construction of a new ANN potential is accomplished by interpolation
of structural energies in a reference data set. The structure format used by
ænet is explained in section 6.1.

To be useful for general atomistic simulations, ANN potentials have to be
invariant with respect to rotation/translation of the structure and exchange
of equivalent atoms. Hence, the atomic coordinates have to be represented
in a basis that fulfills these conditions. The specification of basis setups
(structural fingerprint setups) is topic of section 6.2.

The transformation from Cartesian coordinates to invariant coordinates is
the purpose of the tool generate.x, which iterates through a list of reference
structures and transforms each structure’s coordinates using the method
specified in the input file. The input file format for generate.x is discussed
in section 6.3.

8

Finally, train.x implements different optimization algorithms that can be
used for the training of ANN potentials. See section 6.4 for the usage of
train.x and its input file format.

6.1 Structural energy reference data

The atomic structure format used by ænet for this purpose is a subset of
the XCrySDen Structure Format (XSF) defined on the XCrySDen home-
page. Only the atomic positions of single isolated and periodic structures
are parsed by ænet, i.e., ænet does neither support animated XSF files
(trajectories) nor scalar fields (volumetric data). Additionally, ænet expects
atomic symbols as type specifier, atomic numbers are currently not supported.
The structural energy is included in the XSF file as a comment of the form
total energy = XXX, where XXX is the energy value. This has the ad-
vantage that the resulting file is still a valid XSF file and can be visualized
with XCrySDen and various other visualization programs, such as VMD and
VESTA.

6.1.1 Example ænet XSF file of an isolated structure

The following is an example XSF file of an isolated (non-periodic) structure.
Each line following the keyword ATOMS contains the atomic symbol, the three
Cartesian coordinates, and the three components of the Cartesian force vector.
In principle, any unit system may be used, but the length, energy, and force
units have to be consistent. The example below uses Å, eV, and eV/Å.

Note that it is advisable to work with a greater number of decimals for the
coordinates and atomic forces than used in the example to avoid loss of
accuracy.

total energy = -19543.67017695 eV

ATOMS
O 5.900 3.922 0.851 -0.001 0.001 -0.001
C 5.133 4.445 0.095 0.082 0.104 0.206
O 4.104 5.151 0.087 0.003 -0.001 0.000

9

http://www.xcrysden.org/doc/XSF.html
http://www.xcrysden.org/doc/XSF.html
http://www.ks.uiuc.edu/Research/vmd/
http://jp-minerals.org/vesta/en/

6.1.2 Example ænet XSF file of a periodic structure

The following is an example of an XSF file of a periodic structure. The
PRIMVEC block contains the lattice vectors in rows. For periodic structures,
the number of atoms in the simulation cell has to be specified on the line
following the keyword PRIMCOORD (the example is for 6 atoms). Note that
the number 1 following the atom count is not relevant for ænet. The same
comments as for the isolated structure example above apply.

total energy = -4990.44928342 eV

CRYSTAL
PRIMVEC

2.967 0.000 0.000
0.000 4.648 0.000
0.000 -0.000 4.648

PRIMCOORD
6 1
Ti 1.483 2.324 2.324 0.000 0.000 0.000
Ti 0.000 0.000 0.000 0.000 0.000 0.000
O 1.483 0.905 0.905 0.000 -0.004 -0.004
O 1.483 3.742 3.742 0.000 0.004 0.004
O 0.000 1.418 3.230 0.000 0.004 -0.004
O 0.000 3.230 1.418 0.000 -0.004 0.004

6.2 Invariant basis (structural fingerprint)

Currently, ænet implements the invariant symmetry function basis by Behler
and Parrinello [2,3] but the code is designed such that implementing further
methods is straightforward.

6.2.1 List of keywords

All keywords are case insensitive, but currently have to occur in the given
order. Blank lines and lines starting with !, #, or % are ignored.

descr (optional) Short text that describes the structural fingerprint setup
and possible reference citations. Has to be terminated by "end descr".

10

atom (required) The chemical species (symbol) of the central atom whose
environment is captured by the setup.

env (required) A list of all atomic species that may occur in the environment
of the central atom and are captured by this setup. No blank lines are
allowed.

rmin (required) The minimal allowed distance between two atoms (in the
distance unit used in the XSF files). This value is used by the neighbor
list.

functions (required) Type and parameters of the basis functions. The
example below is for functions of type ’Behler2011’, and the names of
the various functions and parameters follows the original publication.
No blank lines allowed.

6.2.2 Input file template (atomtype.stp)

DESCR
short desscription and reference

END DESCR

ATOM <atom type>

ENV <N>
<T_1>
<T_2>
...
<T_N>

RMIN <R>

FUNCTIONS type=<basis type>
<NF>
<parameters of function 1>
<parameters of function 2>
...
<parameters of function NF>

11

6.2.3 Input file example (Ti.fingerprint.stp)

DESCR
Structural fingerprint setup for Ti in bulk TiO2.
Ref.: N. Artrith and A. Urban,

Comput. Mater. Sci. 114 (2016) 135-150.
END DESCR

ATOM Ti

ENV 2
Ti
O

RMIN 0.75d0

FUNCTIONS type=Behler2011
70
G=2 type2=O eta=0.003214 Rs=0.0000 Rc=6.5
G=2 type2=Ti eta=0.003214 Rs=0.0000 Rc=6.5
...
G=4 type2=O type3=O eta=0.000357 lambda=-1.0 zeta=1.0 Rc=6.5
G=4 type2=O type3=Ti eta=0.000357 lambda=-1.0 zeta=1.0 Rc=6.5
...

6.3 Training set generation with generate.x

Provided a principle input file and all required structural fingerprint setups,
generate.x is run on the command line simply with

$ generate.x generate.in > generate.out

where generate.in is the principal input file, and the output will be written
to generate.out. The code will generate a training set file that can be used
for the training of ANN potentials.

The format and keywords of the principal input file are described in the
following.

12

6.3.1 Alphabetic list of keywords

All keywords are case insensitive and independent of the order. Blank lines
and lines starting with !, #, or % are ignored.

debug (optional) Activate debugging mode; additional output will be gen-
erated.

files (required) Specifies number of and path to reference structures in
the ænet XSF format. The first line following the keyword contains
the number <NF> of structure files. Each of the <NF> following lines
contains a file system path.

output (optional) Defines the path to the training set file that is going
to be generated. The default name is "refdata.train". Note that the
training set file is in a binary format and cannot be viewed by a text
editor. Depending on the number of reference structures, the file can
become very large (e.g., 1 GB).

setups (required) Specifies paths to structural fingerprint basis function
setup files. Each of the <NT> lines following the keyword contains the
chemical symbol <T_i> and the path to the setup file for one species.

timing (optional) Activate timing; additional output files will be created.

types (required) Defines the number of atomic species, their names, and
atomic energies. The first line after the keyword contains the number
of different species <NT>; the following <NT> lines each contain the
chemical symbol <T_i> and atomic energy <E_atom-i> of one species.

6.3.2 Input file template (generate.in)

OUTPUT <path/to/output/file>

TYPES
<NT>
<T_1> <E_atom-1>
<T_2> <E_atom-2>
...
<T_NT> <E_atom-NT>

13

SETUPS
<T_1> <path/to/setup-1>
<T_2> <path/to/setup-2>
...
<T_NT> <path/to/setup-NT>

FILES
<NF>
<path/to/file-1.xsf>
<path/to/file-2.xsf>
...
<path/to/file-NF.xsf>

6.3.3 Input file example (generate.in) for TiO2

OUTPUT TiO2.train

TYPES
2
O -432.503149303 ! eV
Ti -1604.604515075 ! eV

SETUPS
O O.fingerprint.stp
Ti Ti.fingerprint.stp

FILES
7815
./structures/0001.xsf
./structures/0002.xsf
...
./structures/7815.xsf

6.4 ANN potential training with train.x

ANN potential training with train.x requires a training set file compiled
by generate.x (section 6.3). A number of optimization methods are imple-
mented by train.x. Apart from the algorithmic differences, the methods
differ in their support for parallelization and follow different learning strate-

14

gies (batch versus online). For a comparison of the different training methods
see the ænet implementation reference [1].

train.x expects a principal input file (named "train.in" in the example
below). The tool is run from the command line with:

$ train.x train.in > train.out

where the output is written to the file train.out.

The format and keywords of the principal input file are described in the
following.

6.4.1 Alphabetic list of keywords

All keywords are case insensitive and independent of the order. Blank lines
and lines starting with !, #, or % are ignored.

debug (optional) Activate debugging mode; additional output files will be
created.

iterations (optional) Specifies the number of training iterations/epochs
(default: 10).

maxenergy (optional) Highest formation energy to include in the training
set.

method (optional) Specifies the training method/algorithm to be used for
the weight optimization. The line following the keyword contains as
first item the name of the method (e.g., bfgs, online_gd, lm) and as
further items the parameters of the method (if applicable). The default
method is bfgs.

networks (required) Defines the architectures and specifies files for all
ANNs. Each of the <NT> (= number of types) lines following the
keyword contains the chemical symbol <T_i> of the i -th atomic species
in the training set, the path to the ANN output file (binary), and the
architecture of the hidden network layers. The latter is defined by
the number of hidden layers followed by the number of nodes and the
activation function separated by a colon (see example below for two
hidden layers of 5 nodes each and the hyperbolic tangent activation).

save_energies (optional) Activate output of the final energies of all train-
ing and testing structures. The resulting output files can be used to

15

visualize the quality of the ANN fit and to identify structures that are
not well represented. One file per process will be generated, containing
only the energies of all structures handled by the process. The files can
simply be concatenated.

testpercent (optional) Specifies the percentage of reference structures to
be used as independent testing set (default: 10%).

timing (optional) Activate timing; additional output files will be created.

trainingset (required) Defines the name/path to the binary training set
file (output of generate.x, e.g., "refdata.train").

6.4.2 Training methods

The training method is specified with the method keyword followed by the
identifier of the method and its parameters. Currently, train.x offers three
different optimization methods: online gradient descent, the limited-memory
BFGS algorithm and the Levenberg-Marquardt method.

1. Online gradient descent (online_gd)

Gradient descent is implemented as online learning method which
currently prevents efficient parallelization. The method is selected
with the identifier online_gd and has two parameters, the learning
rate (gamma) that is a measure of the stepsize per iteration, and the
momentum parameter (alpha) that controls fluctuations.

An example definition with reasonable parameters is:

METHOD
online_gd gamma=3.0d-2 alpha=0.05d0

2. Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method

The L-BFGS method is implemented as batch training method, which
enables efficient parallelization of the error function evaluation. The
method is selected with the identifier bfgs and does not currently offer
any adjustable parameters:

METHOD
bfgs

16

3. Levenberg-Marquardt method

The Levenberg-Marquardt method that is presently only available in
serial is selected with the identifier lm. The method supports a number
of parameters: batchsize sets the number of training points that are
used to evaluate the error function at a time. This batch size determines
the computational requirements of the method, but should be chosen as
large as possible to guarantee convergence. The learnrate is the initial
value of the learning rate (see online gradient descent). The parameter
iter determines the number of iterations per optimization step used
to adjust the learning rate, and the factor used for this adjustment
is defined with adjust. Finally, a convergence threshold for the error
function can be specified with conv.

Example of reasonable parameters

METHOD
lm batchsize=5000 learnrate=0.1d0 iter=3 conv=0.001 adjust=5.0

6.4.3 Input file template (train.in)

TRAININGSET <path/to/data/file>
TESTPERCENT <percentage>
ITERATIONS <NI>
MAXENERGY <emax e.g. -0.05 eV>
SAVE_ENERGIES

METHOD
<method name> <parameters>

Examples
#
(1) online steepest descent
METHOD
online_gd gamma=5.0d-7 alpha=0.25d0
(2) BFGS
METHOD
bfgs
(3) Levenberg-Marquardt
METHOD
lm batchsize=1000 learnrate=0.1 iter=1 conv=0.001 adjust=10.0

17

NETWORKS
atom network hidden
types file-name layers nodes:activation
<T_1> <path/to/net-1> 2 5:tanh 5:tanh
<T_2> <path/to/net-2> 2 5:tanh 5:tanh
...
<T_NT> <path/to/net-NT> 2 5:tanh 5:tanh

Example using different activation functions:
For details see Eq. (1) in:
N. Artrith and A. Urban, Comput. Mater. Sci. 114 (2016) 135-150.
#
<T_1> <path/to/net-1> 2 5:linear 5:linear
<T_2> <path/to/net-2> 2 5:linear 5:linear

<T_1> <path/to/net-1> 2 5:tanh 5:tanh
<T_2> <path/to/net-2> 2 5:tanh 5:tanh

<T_1> <path/to/net-1> 2 5:sigmoid 5:sigmoid
<T_2> <path/to/net-2> 2 5:twist 5:twist

6.4.4 Example input file (train.in)

TRAININGSET TiO2.train
TESTPERCENT 10
ITERATIONS 500

TIMING

METHOD
lm batchsize=5000 learnrate=0.1d0 iter=3 conv=0.001 adjust=5.0

NETWORKS
! atom network hidden
! types file-name layers nodes:activation

O O.10t-10t.ann 2 10:twist 10:twist
Ti Ti.10t-10t.ann 2 10:twist 10:twist

18

7 Using ANN potentials for atomistic simulations

It is not the aim of the ænet package to compete with well-established and
feature-rich software for molecular dynamics and Monte-Carlo simulations,
such as LAMMPS, DL_POLY, TINKER, or ASE. Instead, ænet provides a library
with C and Fortran APIs, ænetLib, that can be used to extend existing
software by the capability to evaluate ANN potentials constructed with
ænet’s train.x. Note that software developed in many other programming
languages (e.g., C++, Python, and Java) can interface with C libraries and,
hence, is compatible with ænetLib.

A documentation of the ænetLib APIs will be included in a future version of
this manual. For the moment, ænet provides two reference implementations
for the evaluation of structural energies and forces by linking agains ænetLib:
predict.x is written in Fortran and directly uses the Fortran API, and
aenet-predict.py, which implements an ASE calculator in Python. In
addition, an example Python script for performing simple molecular dynamics
simulations with ASE, aenet-md.py, is included in the ænet package.

7.1 Prediction of structural energies and atomic forces with
predict.x

predict.x expects a principal input file (named "predict.in" in the example
below) and one or more atomic structure files in the XSF format. The
path(s) to the structure files may either be specified in the input file for
batch processing, or directly on the command line. The tool is run from the
command line with:

$ predict.x predict.in [<structure1.xsf> ...]

All output will be written to standard out.

The format and keywords of the principal input file are described in the
following.

7.1.1 Alphabetic list of keywords

All keywords are case insensitive and independent of the order. Blank lines
and lines starting with !, #, or % are ignored.

debug (optional) Activate debugging mode; additional output files will be

19

http://lammps.sandia.gov/
http://www.ccp5.ac.uk/DL_POLY_CLASSIC
http://dasher.wustl.edu/tinker/
https://wiki.fysik.dtu.dk/ase
https://wiki.fysik.dtu.dk/ase

created.

files (optional) Specifies a list of paths to input structures. This keyword
may be used for batch processing of a larger number of structures. The
line following the keyword contains the number of input files <NF>,
and each of the following <NF> lines contains a single file system path.
Alternatively, a single input structure may be passed to predict.x as
command line argument. The command line takes precedence over the
list specified with the "files" keyword.

forces (optional) Activates evaluation of the atomic forces. Forces are also
calculated, when the "relax" keyword is present.

networks (required) Specifies the ANN potential files for each chemical
species. On each of the <NT> lines following the keyword a chemical
species <T_i> and the path to its corresponding ANN file is given.

relax (optional) Activate structural relaxation; this will automatically also
activate the calculation of the atomic forces. On the line following
the relax keyword, several options can be specified. See the example
below.

timing (optional) Activate timing; additional output files will be created.

types (required) Specifies the number of different atomic species that may
occur in structures and their chemical symbols. The first line following
the keyword specifies the number <NT> of different atom types; the
following lines each contain one chemical symbol <T_i>.

7.1.2 Input file template (predict.in)

TYPES
<NT>
<T_1>
<T_2>
...
<T_NT>

NETWORKS
<T_1> <path/to/NN-1>
<T_2> <path/to/NN-2>

20

...
<T_NT> <path/to/NN-NT>

FORCES

or optimize coordinates:
#
RELAX
method=bfgs F_conv=1.0d-2 E_conv=1.0d-6 steps=99
#
method: optimization method (currently only BFGS)
F_conv: convergence thershold for the forces
E_conv: convergence threshold for the energy
steps: max. number of iterations

FILES
<NF>
<path/to/structure-1.xsf>
<path/to/structure-2.xsf>
...
<path/to/structure-NF.xsf>

7.1.3 Input file example (predict.in) for TiO2

TYPES
2
Ti
O

NETWORKS
Ti Ti.10tw-10tw.ann
O O.10tw-10tw.ann

FORCES

FILES
10
structure0001.xsf
structure0002.xsf

21

structure0003.xsf
structure0004.xsf
structure0005.xsf
structure0006.xsf
structure0007.xsf
structure0008.xsf
structure0009.xsf
structure0010.xsf

7.2 ASE Interface: aenet-predict.py and aenet-md.py

The Atomic Simulation Environment (ASE) is a Python framework for atom-
istic simulations and for the manipulation of atomic structures. ASE provides
a simple API, calculators, for interfacing with third-party software for the
evaluation of structural energies and atomic forces. The ænet package in-
cludes an implementation of an ASE calculator linked to ænetLib. The
script aenet-predict.py uses this calculator to essentially replicate the fea-
tures of predict.x (see above), and aenet-md.py provides simple molecular
dynamics capabilities.

The input files for both Python scripts use the JSON format and are compat-
ible. Any structure format supported by ASE can be used as input, however,
as of writing, the support of the XSF structure format in ASE is incomplete
and other formats (e.g., VASP’s POSCAR format, FHI-aims geometry.in
format, XYZ, etc.) are recommended.

7.2.1 Alphabetic list of keywords

The input files of aenet-predict.py and aenet-md.py both use the JSON
format. Keywords that are specific to one tool are ignored by the other.

potentials (required) Specifies the ANN potentials for all atomic species.

structure_file (MD only) Path to the file with the initial structure. Ev-
ery structure format that is understood by ASE can be used.

trajectory_file (MD only) Path to the trajectory file (in ASE’s format)
to be generated during the MD simulation.

temperature (MD only) Temperatur for MD simulations in the canonical
ensemble.

22

https://wiki.fysik.dtu.dk/ase/index.html
http://www.json.org/
https://wiki.fysik.dtu.dk/ase/index.html
http://www.json.org/

md_steps (MD only) Number of MD steps.

print_steps (MD only) Number of MD steps between writing output.

time_step (MD only) MD time step in femtoseconds.

7.2.2 Input file template (input.json)

{
"potentials" : {

<T1> : <potential1>,
<T2> : <potential2>,
...

},
"structure_file" : <initial-structure>,
"trajectory_file" : <output-file>,
"temperature" : <T>,
"md_steps" : <N_MD>,
"time_step" : <dt>,
"print_steps" : <N_print>

}

7.2.3 Input file example (input.json)

{
"potentials" : {

"Ti" : "Ti.10t-10t.ann",
"O" : "O.10t-10t.ann"

},
"structure_file" : "input.vasp",
"trajectory_file" : "md.traj",
"temperature" : 300.0,
"md_steps" : 100,
"time_step" : 1.0,
"print_steps" : 1

}

23

8 Acknowledgment

This work used the Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Foundation grant number
ACI-1053575.

9 Questions?

If you run into problems with ænet or if you have a general question, please
contact Dr. Nongnuch Artrith (nartrith@atomistic.net).

10 Bibliography

[1] N. Artrith and A. Urban, Comput. Mater. Sci. 114 (2016) 135-150.

[2] J. Behler and M. Parrinello, Phys. Rev. Lett. 98 (2007) 146401.

[3] J. Behler, J. Chem. Phys. 134 (2011) 074106.

[4] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Phys. Rev. Lett.
104 (2010) 136403.

[5] R. H. Byrd, P. Lu and J. Nocedal, SIAM J. Sci. Stat. Comp. 16 (1995)
1190-1208.

[6] K. Levenberg, Q. Appl. Math. 2 (1944) 164–168.

[7] D. W. Marquardt, SIAM J. Appl. Math. 11 (1963) 431–441.

24

https://www.xsede.org
https://www.xsede.org
http://dx.doi.org/10.1016/j.commatsci.2015.11.047
http://dx.doi.org/10.1103/PhysRevLett.98.146401
http://scitation.aip.org/content/aip/journal/jcp/134/7/10.1063/1.3553717
http://link.aps.org/doi/10.1103/PhysRevLett.104.136403
http://link.aps.org/doi/10.1103/PhysRevLett.104.136403
http://epubs.siam.org/doi/abs/10.1137/0916069
http://epubs.siam.org/doi/abs/10.1137/0916069
http://dx.doi.org/10.1137/0111030

	What is ænet?
	License
	Installation
	Short installation summary
	Detailed installation instructions
	Compilation of external libraries that are distributed with ænet
	Build ænet

	General concepts
	References
	ANN potential construction
	Structural energy reference data
	Example ænet XSF file of an isolated structure
	Example ænet XSF file of a periodic structure

	Invariant basis (structural fingerprint)
	List of keywords
	Input file template (atomtype.stp)
	Input file example (Ti.fingerprint.stp)

	Training set generation with generate.x
	Alphabetic list of keywords
	Input file template (generate.in)
	Input file example (generate.in) for TiO2

	ANN potential training with train.x
	Alphabetic list of keywords
	Training methods
	Input file template (train.in)
	Example input file (train.in)

	Using ANN potentials for atomistic simulations
	Prediction of structural energies and atomic forces with predict.x
	Alphabetic list of keywords
	Input file template (predict.in)
	Input file example (predict.in) for TiO2

	ASE Interface: aenet-predict.py and aenet-md.py
	Alphabetic list of keywords
	Input file template (input.json)
	Input file example (input.json)

	Acknowledgment
	Questions?
	Bibliography

